Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 24(7)2023 Mar 26.
Article in English | MEDLINE | ID: covidwho-2292117

ABSTRACT

The COVID-19 pandemic has presented an unprecedented challenge to the healthcare system. Identifying the genomics and clinical biomarkers for effective patient stratification and management is critical to controlling the spread of the disease. Omics datasets provide a wealth of information that can aid in understanding the underlying molecular mechanisms of COVID-19 and identifying potential biomarkers for patient stratification. Artificial intelligence (AI) and machine learning (ML) algorithms have been increasingly used to analyze large-scale omics and clinical datasets for patient stratification. In this manuscript, we demonstrate the recent advances and predictive accuracies in AI- and ML-based patient stratification modeling linking omics and clinical biomarker datasets, focusing on COVID-19 patients. Our ML model not only demonstrates that clinical features are enough of an indicator of COVID-19 severity and survival, but also infers what clinical features are more impactful, which makes our approach a useful guide for clinicians for prioritization best-fit therapeutics for a given cohort of patients. Moreover, with weighted gene network analysis, we are able to provide insights into gene networks that have a significant association with COVID-19 severity and clinical features. Finally, we have demonstrated the importance of clinical biomarkers in identifying high-risk patients and predicting disease progression.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , COVID-19/genetics , Precision Medicine , Pandemics , Machine Learning , Biomarkers
2.
Molecules ; 26(7)2021 Mar 29.
Article in English | MEDLINE | ID: covidwho-1159212

ABSTRACT

The COVID-19 pandemic has reached over 100 million worldwide. Due to the multi-targeted nature of the virus, it is clear that drugs providing anti-COVID-19 effects need to be developed at an accelerated rate, and a combinatorial approach may stand to be more successful than a single drug therapy. Among several targets and pathways that are under investigation, the renin-angiotensin system (RAS) and specifically angiotensin-converting enzyme (ACE), and Ca2+-mediated SARS-CoV-2 cellular entry and replication are noteworthy. A combination of ACE inhibitors and calcium channel blockers (CCBs), a critical line of therapy for pulmonary hypertension, has shown therapeutic relevance in COVID-19 when investigated independently. To that end, we conducted in silico modeling using BIOiSIM, an AI-integrated mechanistic modeling platform by utilizing known preclinical in vitro and in vivo datasets to accurately simulate systemic therapy disposition and site-of-action penetration of the CCBs and ACEi compounds to tissues implicated in COVID-19 pathogenesis.


Subject(s)
Antiviral Agents/pharmacokinetics , COVID-19 Drug Treatment , Drug Repositioning/methods , Hypertension, Pulmonary/drug therapy , Angiotensin-Converting Enzyme Inhibitors/pharmacokinetics , Antiviral Agents/blood , Biosimilar Pharmaceuticals , COVID-19/complications , Calcium Channel Blockers/pharmacokinetics , Computer Simulation , Databases, Pharmaceutical , Drug Development/methods , Humans , Hypertension, Pulmonary/virology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL